Synthesis and Some Physicochemical Properties of the Carbazine Acid Silyl Esters

A. D. Kirilin, L. O. Belova, M. V. Pletneva, V. D. Sheludyakov, and A. A. Korlyukov

Lomonosov Moscow State Academy of Fine Chemical Technology, Vernadskogo pr. 86, Moscow, 119571 Russia e-mail: kirilinada@rambler.ru

Received October 4, 2010

Abstract—Structure of the dimethylcarbazine acid trimethylsilyl ether and pyrolysis of its derivative, the trimethylsilyl ester of *N,N*-dimethyl-*N*-trimethylsilylcarbazine acid, were studied by the metods of X-ray diffraction and gas chromatography/mass spectrometry. The presence of the bifurcated hydrogen bonds between the trimethylsilyl dimethylcarbazinate molecules was detected. It was revealed why impossible to obtain dimethylaminoisocyanate even by the low-temperature pyrolysis.

DOI: 10.1134/S1070363211110077

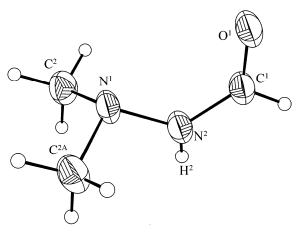
Earlier [1, 2] was shown that by the reactions of carboxylation (a) and N-siloxycarbonylation (b) of N,N-dimethylhydrazine can be synthesized the N,N-dimethylcarbazine acid trimethylsilyl ester (I).

As a rule, trimethylsilyl carbazinates and carbamates are hydrolytically unstable compounds [3]. That is why revealing their structure by X-ray diffraction analysis was performed successfully only for some of them: RNHC(O)OSiMe₃ (R = Ph [2], Me₃Si [4], and H [5]). We synthesized *O*-silyl uretane I and found that this compound, on the contrary, remarkable stable when stored in air. It could be assumed that the reason for this is the existence of I in the prototropic form Ia.

$$Me_2N-NC$$
 OH
 $OSiMe_3$
 $Me_2N-N=C$
 $OSiMe_3$
 I
 Ia

The presence of two tautomers follows from the data of ¹H, ¹³C and ²⁹Si NMR spectra.

To confirm this hypothesis, we carried out X-ray diffraction study of compound **I** (Figs. 1, 2). The bond lengths obtained are listed in Table 1. The Si¹–O¹ bond (1.694 (1) Å) is longer than the standard Si–O single bond (1.64 Å) [6]. Interatomic distance Si¹···O¹ 2.920(1) Å is less than the sum of the respective Van der Waals radii (3.48 Å) [7], but the angle with the opposite atom C² is 151.35(7)°, which eliminates the presence of intramolecular coordination.


Atom N^1 is pyramidal, the sum of angles is 332.7°. The bond N^2 – C^1 is double and is close by length to the single C–N bond adjacent to the carbonyl group (1.333 Å) [2].

The C^1 – O^1 and C^1 – O^2 bond lengths [1.351(2) and 1.214(2) Å, rtespectively] are also close to the values of 1.312 Å and 1.235 Å, characteristic of the bonds in the esters of carboxylic acids [6, 7].

All this led to the conclusion that the *N,N*-dimethylcarbazine acid trimethylsilyl ether exists in the hydrazone form **Ia**.

In the crystal, molecules **I** are connected to form chains through the weak hydrogen bonds $N^2-H^2\cdots O^2$ $\{-x, y + 1/2, -z - 1/2\}$ and $N^2-H^2\cdots N^1$ $\{-x, y + 1/2, -z - 1/2\}$, parallel to the *b* axis of the unit cell (Fig. 2). One can assume that just the presence of these bifurcated hydrogen bonds between molecules leads to an increase in hydrolytic stability of *O*-silyluretane **I**.

We have previously shown that the use of compound I for the synthesis of dimethylamino-

Fig. 1. Structure of molecule of *N,N*-dimethylcarbazine acid trimethylsilyl ester (**I**).

isocyanate (III) by pyrolysis at 180°C ended in failure [1].

I
$$\xrightarrow{\text{Me}_3\text{SiCl/Et}_3\text{N}}$$
 $\text{Me}_2\text{NN}(\text{SiMe}_3)\text{C(O)OSiMe}_3$

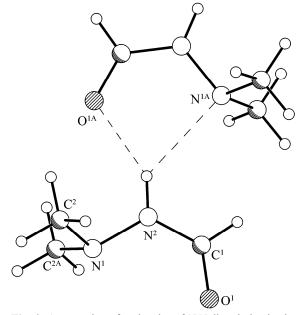
II

O
C
NNMe₂

NNMe₂

O
IV

In our opinion, this is caused by a high temperature of the pyrolysis leading to the dimerization:


$$Me_2NN = C = O \longrightarrow Me_2NN \bigcirc NNMe_2$$

$$III \qquad IV$$

Therefore, to study the possibility of synthesizing isocyanate **III** we used the previously developed technique of pyrolysis of *O*-silyl uretanes in the presence of polychlorosilanes [8], which allows performing this reaction at the temperatures close to room temperature:

II + 1.5PhSiCl₃
$$\longrightarrow$$
 Me₂NNCOSiMe₃

$$\xrightarrow{65-67^{\circ}C}$$
 III \longrightarrow IV

Fig. 2. Assocoation of molecules of *N*,*N*-dimethylcarbazine acid trimethylsilyl ester (**I**).

Nevertheless, despite the significant reduction of the process temperature, isolation of dimethylamino-isocyanate failed again, although undoubtedly it actually formed, as confirmed prolonged presence of strong absorption bands at 2300 cm⁻¹ in the infrared spectrum. Moreover, among the reaction products were found unexpectedly organosiloxanes other than trimethyl-

Table 1. Principal bond lengths and bond angles in the structure ${\bf I}$

Bond	d, Å	Bond angle	ω, deg
	-	_	-
Si ¹ –O ¹	1.694(1)	$O^1Si^1C^4$	109.47 (7)
Si^1-C^4	1.854(2)	$O^1Si^1C^2$	102.29 (7)
Si^1-C^2	1.856(2)	$C^4Si^1C^2$	111.47 (9)
Si^1-C^3	1.857(2)	$O^1Si^1C^3$	111.40 (7)
O^{1} – C^{1}	1.351(2)	$C^4Si^1C^3$	111.65 (8)
$O^2 - C^1$	1.214(2)	$C^2Si^1C^3$	110.20 (8)
$N^1 - N^2$	1.409(2)	$C^1O^1Si^1$	121.3(1)
$N^1 - C^5$	1.467(2)	$N^2N^1C^5$	110.6(1)
$N^1 - C^6$	1.465(2)	$N^2N^1C^6$	110.0(1)
$N^2 - C^1$	1.342(2)	$C^5N^1C^6$	112.1(1)
		$C^1N^2N^1$	117.5(1)
		$O^2C^1N^2$	125.4(1)
		$O^2C^1O^1$	122.7(1)
		$N^2C^1O^1$	111.8(1)

chlorosilane and phenyltrichlorosilane (Table 2), not forming in the similar processes studied earlier [10].

Analysis of the pyrolysis products (Table 2) allows us to conclude that there are two competing reactions involving Me₃SiO groups, that lead to the formation of a new, less stable *O*-silyluretane: without (*a*) and with (*b*) splitting of the SiO bond:

Attempt to separate these compounds from the dimer **IV** leads to an even more profound transformations with the removal of Me₂N, including formation of methylisocyanate and asymmetric dimers and trimers of the formed isocyanates (Table 3).

Table 2. The composition of the *O*-silyluretane **II** pyrolysis products determined by chromatography–mass spectrometry

Comp. no.	Formula	Content, %
IV	$\begin{array}{c} O \\ \parallel \\ C \\ NNMe_2 \\ \\ O \end{array}$	0.37
\mathbf{V}	Me ₃ SiCl	1.31
VI	Me ₃ SiOSiMe ₃	2.71
VII	PhSiCl ₃	66.81
VIII	PhSiCl ₂ OSiMe ₃	9.23
IX	PhSi(OSiMe ₃) ₃	0.81
X	PhCl ₂ SiOSiPhCl ₂	17.38
XI	PhCl ₂ SiOSiPhClOSiMe ₃	1.39

$$\mathbf{III} \longrightarrow \begin{array}{c} \mathbf{PhSiCl_3} \\ \mathbf{Me_2NN} \\ \mathbf{NNMe_2} \\ \mathbf{NNMe_2} \\ \mathbf{NNMe_2} \\ \mathbf{Me_2NN} \\ \mathbf{NNMe_2} \\$$

In connection with the common ideas about the propensity of the compounds **XII**, **XIII** to the β -elimination reactions, one would expect the formation of Me₂NN=C=O as the main product [11]. In fact, the carbaminoyl chloride **XIII** molecule has two distinct electrophilic center: the silicon atom of the Me₃Si group and the carbon atom of the carbonyl group. Moreover, the reaction is complicated by the effects of the substituents neighboring to these centers, namely, Me₂N nitrogen atom and the chlorine atom at the carbon. Formally, there are two β -system:

$$\begin{array}{c|c} Me_{3}\overline{Si} & O \\ \hline \\ Me_{2}N - \cline{N-C-J-Cl} \\ \hline \\ Me_{2}Si - \cline{N-C-J-Cl} \\ \hline \\ NMe_{2} \\ \end{array}$$

In the first case is possible an intramolecular quaternization at the nitrogen atom of the Me₂N group.

III
$$\longrightarrow$$

$$\begin{array}{c}
O \\
Me_2NN \\
O = C
\end{array}$$

$$\begin{array}{c}
NNMe_2 \\
C = O
\end{array}$$

$$\begin{array}{c}
NMe_2
\end{array}$$

This is one of the versions for the appearance of MeNCO fixed as the products **XVI–XVIII** shown in Table 3.

$$\begin{array}{c|c}
 & O^{+} \\
 & Me_{3}SiN - C^{-} - Cl \\
 & Me_{2}SiN - C^{-} - Cl^{-}
\end{array}$$

$$\begin{array}{c|c}
 & A \\
 & Me_{2}SiN - C^{-} - Cl^{-}
\end{array}$$

$$\begin{array}{c|c}
 & O \\
 & Me_{2}SiN - C^{-} - Cl^{-}
\end{array}$$

$$\begin{array}{c|c}
 & O \\
 & Me_{2}SiN - C^{-} - Cl^{-}
\end{array}$$

$$\begin{array}{c|c}
 & Me_{3}SiN - N - C - O
\end{array}$$

$$\begin{array}{c|c}
 & Me_{3}SiN - N - C - O
\end{array}$$

$$\begin{array}{c|c}
 & Me_{3}SiN - N - C - O
\end{array}$$

$$\begin{array}{c|c}
 & Me_{3}SiN - N - C - O
\end{array}$$

$$\begin{array}{c|c}
 & Me_{3}SiN - N - C - O
\end{array}$$

Another parhway is confirmed experimentally [12]. It also implies the possibility of formation of two isocyanates:

The X-ray diffraction studies were performed on a Bruker SMART 1000 CCD diffractometer ($\lambda [\text{Mo}K_{\alpha}] = 0.71073 \text{ Å}$, ω -scan). The structure was solved by direct methods and refined by the full-matrix least squares method in anisotropic approximation over F²hkl. Hydrogen atoms were located from difference Fourier syntheses of electron density and refined in the

Table 3. The composition of the products of reactions (7)–(9) after separation, determined by chromatography – mass spectrometry

Comp. no.	Formula	Content, %
XIV	O 	0.86
	/ \	
	Me ₂ NN NNMe ₂	
	Ph Cl	
XV	0	97.48
	Me ₂ NN NNMe ₂	
	C C	
	0	
XVI	O 	0.28
	MeN NMe	
	Si Ph Cl	
XVII	0 	1.06
	C	
	MeN NMe O=C C=O	
	o=c $c=o$	
	 Me	
XVIII	o 	0.39
	Me ₂ NN NNMe ₂	
	o=c $c=o$	
	N 	
	NMe ₂	

isotopic approximation. The main crystallographic data and refinement parameters are listed in Table 4. All calculations were performed using SHELXTL PLUS program package.

The study of composition of the *O*-silyluretane **II** pyrolysis products was carried out on a Thermo Focus

2256 KIRILIN et al.

Table 4. The main crystallographic data and refinement parameters of structure **I**

Parameter	Value
Formula	$C_6H_{16}N_2O_2Si$
Molecular weight	176.30
T, K	120
Crystal system	Monoclinic
Space group	P2 ₁ /c
Z	4
a, Å	11.7265(19)
b, Å	8.1556(13)
c, Å	11.5957(18)
β, deg	113.835(3)
V, Å ³	1014.4(3)
$d_{ m calc},{ m g}{ m cm}^{-3}$	1.154
μ, cm ⁻¹	1.94
F(000)	384
$2\theta_{max}$, deg	60
Number of reflexes (total)	11415
Number of independent reflexes	2933
Number of reflexes with $I > 2\sigma(I)$	2138
Number of refined parameters	106
R_1	0.0450
wR_2	0.0974
GOOF	0.982
Residual electron density, $e \text{Å}^{-3} (\rho_{\text{min}}/\rho_{\text{max}})$	0.552/-0.248

DSQ II gas chromatograph/mass spectrometer (gas chromatography: capillary column Supleco SPB-5ms, 15 m length, 0.25 mm inner diameter, phase thickness of 0.25 µm, carrier gas helium, operation mode: injector temperature 290°C, the chromatograph initial oven temperature 60°C, isothermal maintaining for 2 min, followed by heating 15°C min⁻¹ to 300°C; mass spectrometer ionization energy 70 eV, source temperature 230°C, scan range 10–800 Da at a rate of 1 scan s⁻¹, one unity resolution over the entire range of masses).

The sudy of composition of the *O*-silyluretane **II** pyrolysis products after separation of the reaction mixture was performed on a Finnigan MAT 95 XL gas chromatography/mass spectrometer (gas chromatography: capillary column Varian VF-5ms, 30 m length, inner diameter 0.25 mm, phase thickness 0.25 μm, carrier gas helium; chromatograph operation mode: injector temperature 270°C, the chromatograph oven initial temperature 60°C, heating at 15°C min⁻¹ to 270°C; mass spectrometer operation: ionization energy 70eV, source temperature 230°C, scan range 20–800 Da with rate of 1 s for a decade of mass, resolution 1500 FWHM).

The compounds **I** and **II** were synthesized by the method described in [1].

REFERENCES

- 1. Sheludyakov, V.D., Rodionov, E.S., Kirilin, A.D., and Mironov, V.F., *Zh. Obshch. Khim.*, 1976, vol. 45, no. 10, p. 2265.
- 2. Sheludyakov, V.D., Kirilin, A.D., Gusev, A.I., and Sharapov, V.A., *Zh. Obshch. Khim.*, 1976, vol. 46, no. 12, p. 2712.
- 3. Kirilina, N.I., Sheludyakov, V.D., Kirilin, A.D., and Mironov, V.F., *Dvuokis' ugleroda v khimii KOS* (Carbon Dioxide in the Chemistry of Organosilicon Compounds), Moscow:NIITEKhIM, 1980, p. 41.
- 4. Sheludyakov, V.D., Gusev, A.I., Dmitrieva, A.B., Los', M.G., and Kirilin, A.D., *Zh. Obshch. Khim.*, 1983, vol. 53, no. 10, p. 2276.
- Sheludyakov, V.D., Dmitrieva, A.B., Gusev, A.I., Apal'kova, G.M., and Kirilin, A.D., Zh. Obshch. Khim., 1984, vol. 54, no. 10, p. 2298.
- 6. Bokii, N.G., Shklover, V.E., and Struchkov, Yu.T., *Itogi nauki. Kristallokhimiya* (Progress in Science: Crystallochemistry), Moscow: VINITI, 1974, no. 10.
- 7. Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G., and Taylor, R., *J. Chem. Soc., Perkin Trans.* 2, 1987, p. S1.
- 8. Bondi, A., J. Phys. Chem., 1964, vol. 68, p. 441.
- 9. Interatomic Distances and Configuration in Molecules and Ions, Chem. Soc., Spesial Publ., London: 1965, no. 18.
- 10. Sheludyakov, V.D., Dmitrieva, A.B., Tumanov, V.Yu., Bochkarev, V.N., Kirilin, A.D., and Chernyshev, E.A., *Zh. Obshch. Khim.*, 1982, vol. 52, no. 9, p. 2142.
- 11. Sheludyakov, V.D., *Reaktsiya β-eliminirovaniya azot-soderzhashchikh soedinenii so strukturnym fragmentom SiNCX* (The β-Elimination Reaction of the Nitrogen-Containin Compounds with the SiNCX Structural Fragment) Moscow: NIITEKhIM. 1986, p. 67.
- 12. Wadsworth, W.S. and Emmons, W.D., *J. Org. Chem.*, 1967, vol. 32, no. 5, p. 129.